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概要
本稿の趣旨は，双曲幾何における三角法の公式を導くことである。
まず，論の展開に必要となる複素関数のいくつかの性質を列記する。
その後，双曲幾何のモデルとしてポアンカレの上半平面モデルH+ を導入する。
H+ を利用して，始めに直角三角形に関する関係式（[公式 (i)～(vi)]）を導出する。次に，一般の三角形に関
する関係式（[公式 (vii)～(ix)]）を導出する。
最後に，それらの中でも特に重要な 2つの公式

双曲幾何における正弦公式 sin A
sinh a

=
sin B
sinh b

=
sin C
sinh c

（[公式 (vii)]）

双曲幾何における余弦公式 cosh a = cosh b cosh c − sinh b sinh c cos A （[公式 (viii)]）

をユークリッド幾何および球面幾何の公式と比較し，

• 三角形が十分小さい場合にはユークリッド幾何の公式で近似できること
• 双曲幾何の公式は，球面幾何において半径 k = iとしたものに形式的に対応していること

を確認する。また，[公式 (ix)]から，双曲幾何においては相似の概念が存在しないこと，および三角形の内角
の和は常に πより小さいことを導く。

リマスター（補修・復元）にあたって
1996年 2月に私がこの論文を大学に提出してから，約 30年の月日が流れた。手元にある卒業論文のコピー
は状態が悪く，しかしそれ以上に，そもそもワープロ専用機で打った数式だらけの論文は可読性がもともと著
しく低い。2025年 10月，私は卒業論文をリマスターして可読性が高いものに作り直すことを決意した。
約 30年前にワープロ専用機で打ったデータなど，とっくの昔に失われている。もともと可読性が低かった
数式だらけの文書は OCRで正しく読み取ることができず，結果的にほぼすべてを直接打ち直すこととなった。
なお，構成や文章表現など，修正を施した箇所も多少あるが，内容に関してはまったく手を加えていない。
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はじめに
古代ギリシアのユークリッド(脚注 1) は，著作「原論」において，次の 5つの公準から幾何を構築した。

[公準 1] 任意の 2点を結ぶ線分を引くことができる。
[公準 2] 任意の線分は両側へ限りなく延長できる。
[公準 3] 任意の点を中心とする，任意の点を通る円を描くことができる。
[公準 4] すべての直角は相等しい。
[公準 5] 2直線と交わる一本の直線が作る同側内角の和が 2直角よりも小さければ，この 2直線はその側で交

わる。

この 5つの公準を公理として採用した幾何学を「ユークリッド幾何学」という。このうち，[公準 5]は「直
線と，その直線上にない点が与えられたとき，その点を通りこの直線に平行な直線が唯一つ存在する。」という
命題と同値であるので，特に「平行線の公準」と呼ばれている。

[公準 5]は他の公理・公準・定義から導くことができるのではないかと多くの数学者が疑い，その証明を試
みたが，二千年以上の間，誰も成功しなかった。19世紀になって，ロシアのロバチェフスキー(脚注 2)，ハンガ
リーのボヤイ(脚注 3)，ドイツのガウス(脚注 4)らによって [公準 5]を否定した公理系を採用しても矛盾のない幾何
学が構築できることが発見された。今日ではこの幾何学を「双曲幾何」という。

[公準 5]を否定すると，「直線と，その直線上にない点が与えられたとき，その点を通りこの直線に平行な直
線は無数に存在する。」となるが，これを [公準 5]の代わりに採用することによってどのような三角法の公式が
導き出されるのかを示すのがこの論文の趣旨である。それを示すためにポアンカレの上半平面モデルH+ を導
入する。

(脚注 1) Euclid（ギリシア名は Eukleidēs[エウクレイデス]），B.C. 330頃–275頃
(脚注 2) Nikolai Ivanovich Lobachevsky，1792–1856
(脚注 3) Bolyai János，1802–1860
(脚注 4) Johann Carl Friedrich Gauß，1777–1855
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§ 1 複素関数論に関する準備
双曲幾何について考察するにあたって，その前に，複素関数論に関するいくつかの定義と定理を準備する。

（これらの証明は，本稿の趣旨とは直接結びつかないので割愛する。）

§ 1.1 一次分数変換について

定義� �
　 a,b,c,d ∈ Cとし，かつ ad−bc , 0とするとき，

w =
az + b
cz + d

(a, b, c, d ∈ C, ad−bc , 0)

を一次分数変換という。� �
定理 A� �
　一般の一次分数変換

w =
az + b
cz + d

(a, b, c, d ∈ C, ad−bc , 0)

は，複素数平面 C上の円および直線を円または直線に移す。� �
定理 B� �
　一般の一次分数変換

w =
az + b
cz + d

(a, b, c, d ∈ C, ad−bc , 0)

は等角写像（角の大きさを保つ写像）である。� �
定理 C� �
　 a,b,c,d ∈ Rとし，かつ ad − bc > 0とするとき，一次分数変換

w =
az + b
cz + d

(a, b, c, d ∈ R, ad−bc > 0)

は上半平面H+ を上半平面H+ に移す。
　ここで，上半平面H+ とは，複素数平面 Cにおける虚部が正の点からなる部分集合を指す。すなわち，

H+ = {x + iy ∈ C | x ∈ R, y > 0}� �
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定理 D� �
　 [定理 C]の型の一次分数変換，すなわち

w =
az + b
cz + d

(a, b, c, d ∈ R, ad−bc > 0)

を合成して得られる変換もまた，この型の一次分数変換となる。� �
この論文では [定理 C]の型の一次分数変換しか扱わないので，以後「一次分数変換」といった場合にはこの
型のものを指すものとする。

§ 1.2 複比について

定義� �
　 z1, z2, z3, z4 を複素数とする。（ただし，これらのうち少なくとも 3つは相異なる数とする。）このとき，

[z1, z2, z3, z4] =
(z1−z3)(z2−z4)
(z2−z3)(z1−z4)

を 4数 z1, z2, z3, z4 の複比という。
　ここで，z1, z2, z3, z4 のうちに∞がある場合には，それが∞に発散したときの極限で置き換えるものと
する。例えば，z4 = ∞の場合は，

[z1, z2, z3, z4]→ z1−z3

z2−z3
(z4 →∞)

より，

[z1, z2, z3,∞] =
z1−z3

z2−z3

である。� �
定理 E� �
　複比は一次分数変換によって不変である。すなわち，

w j =
az j + b
cz j + d

( j = 1, 2, 3, 4)

のとき，

[w1,w2,w3,w4] = [z1, z2, z3, z4]

が成り立つ。� �
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§ 2 双曲幾何
§ 2.1 ポアンカレの上半平面モデルH+

本稿の趣旨は双曲幾何における三角法の公式を導くことである。それを導くために，ポアンカレの上半平面
モデルH+ を導入する。
このモデルにおいての「平面」「直線」「点」などの定義は我々の日常的な感覚で考える「平面」「直線」「点」
などとは異なるので，誤解を避けるために，「ポアンカレの意味の」「普通の意味での」といった接頭句をつけ
て区別することにする。

定義� �
[ポアンカレのモデルにおける平面の定義] 　

ポアンカレのモデルにおいて，「平面」とは，複素数平面 Cにおける上半平面

H+ = {x + iy ∈ C | x ∈ R, y > 0}

のことを指す。
[ポアンカレのモデルにおける直線の定義] 　

ポアンカレのモデルにおいて，「直線」とは，実軸上に中心を持つH+ 上の（普通の意味での）半
円，および実軸に直交するH+ 上の（普通の意味での）半直線のことを指す。

[ポアンカレのモデルにおける点の定義] 　
ポアンカレのモデルにおいて，「点」とは，H+ 上の点だけを指す。� �

ここで複素数平面の概念を用いているのは，「§ 1. 複素関数論に関する準備」で述べた定理を利用するため
である。実際，[定理 A,B,C]より，ポアンカレの意味の「直線」は一次分数変換によってやはりポアンカレの
意味の「直線」に移ることがわかる。

定理 1� �
　（ポアンカレの意味の）直線 m，および m上の点 z0 が与えられたとき，適当な一次分数変換により m

を上半虚軸に，また z0 を iに移すことができる。（上半虚軸とは {
iy ∈ C | y > 0

}で定義される（普通の意
味での）半直線を指す。）さらに，mを上半虚軸に移す方向も指定できる。（m上で zをある方向に動かし
たときに wが上半虚軸上を動く方向を指定できる。）� �

[定理 1]の証明 case.1 mが（普通の意味での）半直線の場合：
　その半直線が {

x0 + iy | y > 0
}（ただし x0 ∈ Rは定数）で表されるとすれば，まず変換

w = z − x0

によって上半虚軸に移る。m上の点 z0 = x0 + iy0（y0 > 0）は，いまの変換によって上半虚軸上の
点 iy0 に移るので，次に変換

w =
1
y0

z

を行うことによってこの点は iに移る。（この変換が上半虚軸を上半虚軸に移すことは明らか。）最
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後に，方向を変えたい場合は，変換

w = − 1
z

を行えばよい。(zが上半虚軸上を 0から∞まで動くとき，wは上半虚軸上を∞から 0まで動く。）
　これらの変換を合成すれば，[定理 D]よりこの合成変換もまた一次分数変換である。

case.2 mが（普通の意味での）半円の場合：
　半円の中心を c ∈ R，半径を r > 0とすれば，まず変換

w = z − c

にて原点を中心とする半円に，次に変換

w =
1
r

z

にて半径 1の半円に移る。ここで変換

w =
z + 1
− z + 1

を行えば，その像は上半虚軸となる。
　以上の変換で z0 が上半虚軸上の点 iy0（y0 > 0）という点に移ったとすれば，あとは case.1の
場合と同様に，

w =
1
y0

z

でこの点を iに移し，さらに方向を変える場合には

w = − 1
z

を行えばよい。
　これらの変換を合成すれば，[定理 D]よりこの合成変換もまた一次分数変換である。

（証明終）

定義� �
　（ポアンカレの意味の）直線 m上の 2点 z, z′ について，2点間の距離 d(z, z′)を，

d(z, z′) =
∣∣∣log[z, z′, x0, x1]

∣∣∣
と定義する。ここで，x0，x1 は m が（普通の意味での）半円である場合には実軸との 2 つの交点を表
し，また mが（普通の意味での）半直線である場合は一方が実軸との交点を，他方は無限遠点∞を表す。
（x0，x1 をどちらにとっても構わない。）

z′
z

x0 (x1) x1 (x0) x1 (x0)

x0 (x1)

z′

z

H+

� �
この定義が成立するためには，あO 複比 [z, z′, x0, x1] が正の実数となること，いO 距離の公理が成り立つこと，
が要請されるので，確認しておく。
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あO 複比 [z, z′, x0, x1] が正の実数となること 　
　 [定理 E]より，複比は一次分数変換で不変であり，また [定理 1]より，mは一次分数変換で上半虚軸
に移すことができる。よって，mが上半虚軸である場合に正の実数であることを確認すれば十分である。
　このとき，x0 = 0，x1 = ∞とすれば，z = iy，z′ = iy′（y,y′ > 0）のとき

[z, z′, 0,∞] =
z
z′
=

iy
iy′
=

y
y′

となり，正の実数である。x0 = ∞，x1 = 0としても同様である。
いO 距離の公理が成り立つこと 　

　距離の公理は，以下の 3つである。
距離の公理� �

[距離の公理 (i)] d(z, z′) ≧ 0；特に，d(z, z′) = 0 ⇐⇒ z = z′

[距離の公理 (ii)] d(z′, z) = d(z, z′)

[距離の公理 (iii)] d(z, z′) ≦ d(z, z′′) + d(z′′, z′)� �
　ポアンカレの意味の距離の定義が，この 3つを満たしていることを確かめなければならない。
　 [距離の公理 (i)]については，d(z, z′) ≧ 0となることは定義から明らかである。また， d(z, z′) = 0と
なるのは，（あOより） z

z′ = 1のとき，すなわち z = z′ のときだけである。逆は自明。
　 [距離の公理 (ii)]についても，複比の定義から

[z′, z, x0, x1] =
1

[z, z′, x0, x1]

となるので，距離の定義より明らかに d(z′, z) = d(z, z′)となる。
　さて，[距離の公理 (iii)]についてであるが，これは，この論文の趣旨である「三角法の公式」から導か
れるので，ここでは確認せずに，公式を示したあとに確認することにする。(→ #18ページ）
　なお，m上に 3点 z, z′, z′′ が与えられ， z′ が zと z′′ の間にあるとき，

d(z, z′) + d(z′, z′′) = d(z, z′′)

となることを確認しておく。対数関数の性質　 log M + log N = log MN　より，

[z, z′, x0, x1][z′, z′′, x0, x1] = [z, z′′, x0, x1]

を示せば十分である。

[z, z′, x0, x1][z′, z′′, x0, x1] =
(z−x0)(z′−x1)
(z′−x0)(z−x1)

· (z′−x0)(z′′−x1)
(z′′−x0)(z′−x1)

=
(z−x0)(z′′−x1)
(z′′−x0)(z−x1)

= [z, z′′, x0, x1]

これで確かめられた。

定理 2� �
　（ポアンカレの意味の）2点間の距離は，一次分数変換により不変である。� �

[定理 2]の証明 d(z, z′)の定義，および [定理 E]より明らか。 （証明終）
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定理 3� �
　（ポアンカレの意味の）直線 mが普通の意味での半円の場合，m上の 2点 z, z′ の実部をそれぞれ x, x′

とすれば，

d(z, z′) =
1
2

∣∣∣log[x, x′, x0, x1]
∣∣∣

が成り立つ。特に，x0 < x′ < x < x1 または x1 < x < x′ < x0 ならば絶対値の記号は外せて，

d(z, z′) =
1
2

log[x, x′, x0, x1]

となる。� �
[定理 3]の証明 d(z, z′)の定義より，

[z, z′, x0, x1]2 = [x, x′, xo, x1]

を示せばよい。下の図において，半円の半径を rとする。

x0 C x1

H+ z′

z直線 m

xx′

△zx0x1 ∽ △xx0zより
|z−x0|

2r
=
|x−x0|
|z−x0|

すなわち

|z−x0|2 = 2r|x−x0|

同様に

|z′−x1|2 = 2r|x′−x1|
|z′−x0|2 = 2r|x′−x0|
|z−x1|2 = 2r|x−x1|

　したがって

[z, z′, x0, x1]2 =

{
(z−x0)(z′−x1)
(z′−x0)(z−x1)

}2

=
(x−x0)(x′−x1)
(x′−x0)(x−x1)

= [x, x′, x0, x1]

（ここで絶対値の記号が消えているのは，[z, z′, x0, x1] が正の実数となることをすでに知っているため
である。）
　特に，x0 < x′ < x < x1 または x1 < x < x′ < x0 という条件の下では [x, x′, x0, x1] > 1となるので

log[x, x′, x0, x1] > 0

よって，絶対値を外しても差し支えない。 （証明終）
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§ 2.2 双曲幾何の三角法

さて，ここからがこの論文の本題である。
上半平面H+ 内にポアンカレの意味の三角形（＝ポアンカレの意味の 3直線に囲まれた図形）ABCについ
て考える。3つの角 ∠A，∠B，∠Cの大きさをそれぞれ A，B，Cとし，これらと，3つの辺の（ポアンカレの意
味の）長さ

a = d(B,C), b = d(C,A), c = d(A,B)

の間の関係を考察する。

§ 2.2.1 △ABCが直角三角形の場合（[公式 (i)～(vi)]）
C = π2 であるとして議論を進める。一次分数変換は角の大きさも（ポアンカレの意味の）長さも変えない
ので，適当な一次分数変換で三角形を動かすことにより辺 ABは上半虚軸上にあると仮定してよい。さらに，
点 Bは iに，そして点 Aは点 Bより上にあると仮定してよい（∵ [定理 A,B,C] および [定理 1,2] ）。ここで，
辺 BC，CAは（普通の意味での）円弧であるから，それらの中心をそれぞれ P，Qとする。OA，OP，OQの
（普通の意味での）長さをそれぞれ t，u，vとする。下図は，以上のことを図示したものである。

PQ O uv

C

A

B
i

t

H+ 虚軸

実軸

まず，次の 3つの公式を示す。

公式 (i)(ii)� �
　上半平面H+ 上にある C = π2 の（ポアンカレの意味の）直角三角形 ABCにおいて，次の関係式が成
り立つ。

[公式 (i)] cosh c = cot A · cot B

[公式 (ii)] tanh a = tanh c · cos B

[公式 (ii)’] tanh b = tanh c · cos A� �
[公式 (i)]の証明

c = d(A,B) =
∣∣∣log[it, i, 0,∞]

∣∣∣ = log t…… 1O
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より

cosh c =
ec+e−c

2
=

t+t−1

2
=

t2+1
2t
…… 2O

である。
　また，∠A = ∠AQO，∠B = ∠BPOより，

cot A =
v
t
, cot B =

u
1
= u…… 3O

であり，一方，△PCQが直角三角形であることより，ピタゴラスの定理を用いて

(u + v)2 = PC2 +QC2 = PB2 +QA2 = 1 + u2 + v2 + t2

この両辺から u2 + v2 を消去すれば

2uv = 1 + t2…… 4O

を得る。
　 2O， 3O， 4Oより

cosh c = cot A · cot B

（証明終）
[公式 (ii)]の証明 1O， 4Oより，

tanh c =
e2c−1
e2c+1

=
t2−1
t2+1

=
2uv−2

2uv
=

uv−1
uv

…… 5O

である。ここで， a = d(B,C)を求めるために，円弧 BCを延長した（普通の意味での）半円が実軸と交
わる 2点を考える。半径 PBの（普通の意味での）長さを rとすれば，2点はそれぞれ u−r，u+rであ
る。また，点 Bの実部は 0，点 Cの実部は u−r cosθ（ただし θ = ∠OPCとおいた）である。さらに，
∠OPB = ∠Bであるから，u = r cos Bと書ける。したがって，[定理 3]より

a = d(B,C)

=
1
2

log [u−r cosθ, 0, u−r, u+r]

=
1
2

log [r cos B−r cosθ, 0, r cos B−r, r cos B+r]

=
1
2

log
(r−r cosθ)(−r−r cos B)
(r−r cos B)(−r−r cosθ)

=
1
2

log
(1+ cos B)(1− cosθ)
(1− cos B)(1+ cosθ)

そして，

tanh a =
e2a−1
e2a+1

=

(1+ cos B)(1− cosθ)
(1− cos B)(1+ cosθ)

− 1

(1+ cos B)(1− cosθ)
(1− cos B)(1+ cosθ)

+ 1

=
(1+ cos B)(1− cosθ) − (1− cos B)(1+ cosθ)
(1+ cos B)(1− cosθ) + (1− cos B)(1+ cosθ)

=
2 cos B − 2 cosθ
2 − 2 cos B cosθ

=
cos B − cosθ

1 − cos B cosθ
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これに

cos B =
u√

1+u2
, cosθ =

√
1+u2

u + v
…… 6O

を代入して

tanh a =

u√
1+u2

−
√

1+u2

u + v

1 − u
u + v

=
uv − 1

v
√

1+u2
…… 7O

5O， 6O， 7Oより，

tanh a = tanh c · cos B

（証明終）

以上の [公式 (i),(ii),(ii)’]から，単に計算によって，さらに次の 7つの公式が導かれる。

公式 (iii)～(vi)� �
　上半平面H+ 上にある C = π2 の（ポアンカレの意味の）直角三角形 ABCにおいて，次の関係式が成
り立つ。

[公式 (iii)] sinh a = sinh c · sin A

[公式 (iii)’] sinh b = sinh c · sin B

[公式 (iv)] cos A = sin B · cosh a

[公式 (iv)’] cos B = sin A · cosh b

[公式 (v)] cosh c = cosh a · cosh b

[公式 (vi)] tanh a = sinh b · tan A

[公式 (vi)’] tanh b = sinh a · tan B� �
[公式 (iii)]の証明 [公式 (i)]，[公式 (ii)]の両辺をそれぞれ 2乗し，

cosh2 c = cot2 A · cot2 B

tanh2 a = tanh2 c · cos2 B

さらにそれぞれ変形して

tan2 B =
cot2 A

cosh2 c

sec2 B =
tanh2 c

tanh2 a

ここで，三角関数の相互関係 1 + tan2 x = sec2 x にこの 2式を代入すれば，

1＋ cot2 A

cosh2 c
=

tanh2 c

tanh2 a
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両辺に cosh2 cを掛けて，

cosh2 c + cot2 A =
sinh2 c

tanh2 a

ここで，双曲関数の相互関係 cosh2 x = 1 + sinh2 x と，この関係式から導かれる

tanh2 x =
sinh2 x

cosh2 x
=

sinh2 x

1 + sinh2 x

を用いて，

1 + sinh2 c + cot2 A =
sinh2 c

sinh2 a
(1 + sinh2 a)

=
sinh2 c

sinh2 a
+ sinh2 c

したがって，

1 + cot2 A =
sinh2 c

sinh2 a

この式の左辺は cosec2 Aであるから，結局

cosec2 A =
sinh2 c

sinh2 a

よって

sinh2 a = sinh2 c · sin2 A

a > 0，c > 0，0 < A < π2 なので，sinh a > 0，sinh c > 0，sin A > 0となることに注意して平方根を
取れば，

sinh a = sinh c · sin A

（証明終）
[公式 (iv)]の証明

sinh a = sinh c · sin A （[公式 (iii)]）

を，

tanh a = tanh c · cos B （[公式 (ii)]）

で両辺それぞれ割って，

cosh a = cosh c · sin A
cos B

ここに，

cosh c = cot A · cot B （[公式 (i)]）

を代入すれば，

cosh a = cot A · cot B · sin A
cos B

=
cos A
sin B
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したがって，

cos A = sin B · cosh a

（証明終）
[公式 (v)]の証明

cos A = sin B · cosh a （[公式 (iv)]）

と

cos B = sin A · cosh b （[公式 (iv)’]）

を両辺それぞれ掛けて，

cos A · cos B = sin A · sin B · cosh a · cosh b

したがって

cot A · cot B = cosh a · cosh b

ここで，[公式 (i)]より，左辺は cosh cであるので，結局，

cosh c = cosh a · cosh b

（証明終）
[公式 (vi)]の証明 [公式 (iii)’]より

sin B =
sinh b
sinh c

これを [公式 (iv)]に代入すれば，

cos A =
sinh b · cosh a

sinh c
…… 8O

また，[公式 (iii)]より

sin A =
sinh a
sinh c

…… 9O

9O式を 8O式で割れば，

tan A =
tanh a
sinh b

したがって

tanh a = sinh b · tan A

（証明終）
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§ 2.2.2 △ABCが（直角三角形とは限らない）一般の三角形の場合（[公式 (vii)～(ix)]）

公式 (vii)� �
　上半平面H+ 上にある一般の（ポアンカレの意味の）三角形 ABCにおいて，次の関係式が成り立つ。

[公式 (vii)] sin A
sinh a =

sin B
sinh b =

sin C
sinh c� �

[公式 (vii)]の証明 頂点 Cから辺 ABに（ポアンカレの意味の）垂線を下ろし，その垂線の足を Dとする。ま
た，線分 CDの（ポアンカレの意味の）長さを dとする。
　 Dが線分AB上にある場合（下図〔イ〕），線分ABの Bの方向への延長線上にある場合（下図〔ロ〕），
線分 ABの Aの方向への延長線上にある場合（下図〔ハ〕）で場合分けして考える。

B

C

A

D

b

a

c

d

C C

B A

A B
b a

cc

dd

DD a b

〔イ〕 〔ロ〕 〔ハ〕

〔イ〕の場合：
直角三角形 ADCと BDCに [公式 (iii)]を適用すれば，

sinh d = sinh b · sin A
sinh d = sinh a · sin B

より
sin A
sinh a

=
sin B
sinh b

〔ロ〕の場合：
直角三角形 ADCと BDCに [公式 (iii)]を適用すれば，

sinh d = sinh b · sin A
sinh d = sinh a · sin (π−B)

= sinh a · sin B

より
sin A
sinh a

=
sin B
sinh b

〔ハ〕の場合：
直角三角形 ADCと BDCに [公式 (iii)]を適用すれば，

sinh d = sinh b · sin (π−A)

= sinh b · sin A
sinh d = sinh a · sin B

より
sin A
sinh a

=
sin B
sinh b
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よって，〔イ〕，〔ロ〕，〔ハ〕のいずれの場合も

sin A
sinh a

=
sin B
sinh b

同様に，

sin B
sinh b

=
sin C
sinh c

も示せる。 （証明終）

公式 (viii)� �
　上半平面H+ 上にある一般の（ポアンカレの意味の）三角形 ABCにおいて，次の関係式が成り立つ。

[公式 (viii)] cosh a = cosh b · cosh c − sinh b · sinh c · cos A

[公式 (viii)’] cosh b = cosh c · cosh a − sinh c · sinh a · cos B

[公式 (viii)”] cosh c = cosh a · cosh b − sinh a · sinh b · cos C� �
[公式 (viii)]の証明 頂点 C から辺 AB に（ポアンカレの意味の）垂線を下ろし，その垂線の足を D とする。

また，線分 CDの（ポアンカレの意味の）長さを dとする。
　ここで，辺 AD の（ポアンカレの意味の）長さを e とすると，点 D が辺 AB 上にあるとき（下図
〔イ〕），点 Dが辺ABの Bの方向への延長線上にあるとき（下図〔ロ〕），点 Dが辺 ABの Aの方向への
延長線上にあるとき（下図〔ハ〕）において，線分 BDの（ポアンカレの意味の）長さはそれぞれ (c−e)，
(e−c)，(c+e)となるので，それぞれ場合分けして考える。

B

C

A

D

b

a

c

d

C C

B A

A B
b a

cc

dd

DD a b

〔イ〕 〔ロ〕 〔ハ〕

〔イ〕の場合：
直角三角形 ADCと BDCに [公式 (v)]を適用すれば，

cosh b = cosh d · cosh e……10O

cosh a = cosh d · cosh (c−e)

= cosh d · (cosh c · cosh e − sinh c · sinh e)……11O

11O式を10O式で割れば，

cosh a
cosh b

= cosh c − sinh c · tanh e……12O

また，[公式 (ii)]を直角三角形 ADCに適用し，

tanh e = tanh b · cos A

これを12Oに代入すれば，

cosh a
cosh b

= cosh c − sinh c · tanh b · cos A
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したがって

cosh a = cosh b · cosh c − sinh b · sinh c · cos A

〔ロ〕の場合：

cosh (c−e) = cosh (e−c)

より，〔イ〕の場合に帰結される。
〔ハ〕の場合：
直角三角形 ADCと BDCに [公式 (v)]を適用すれば，

cosh b = cosh d · cosh e……13O

cosh a = cosh d · cosh (c+e)

= cosh d · (cosh c · cosh e + sinh c · sinh e)……14O

14O式を13O式で割れば，

cosh a
cosh b

= cosh c + sinh c · tanh e……15O

また，[公式 (ii)]を直角三角形 ADCに適用し，

tanh e = tanh b · cos (π−A)

= − tanh b · cos A

これを15Oに代入すれば，

cosh a
cosh b

= cosh c − sinh c · tanh b · cos A

したがって

cosh a = cosh b · cosh c − sinh b · sinh c · cos A

以上〔イ〕～〔ハ〕より，いずれの場合にも (viii)が成り立つ。 （証明終）

公式 (ix)� �
　上半平面H+ 上にある一般の（ポアンカレの意味の）三角形 ABCにおいて，次の関係式が成り立つ。

[公式 (ix)] cosh a = cos B · cos C + cos A
sin B · sin C

[公式 (ix)’] cosh b = cos C · cos A + cos B
sin C · sin A

[公式 (ix)”] cosh c = cos A · cos B + cos C
sin A · sin B� �

[公式 (ix)]の証明 計算が繁雑になることを避けるために，

α = cosh a, β = cosh b, γ = cosh c

α′ = sinh a, β′ = sinh b, γ′ = sinh c

とする。ここで，双曲関数の相互関係 sinh2 x = cosh2 x − 1 より

α′2 = α2 − 1, β′2 = β2 − 1, γ′2 = γ2 − 1

が成り立つことに注意しておく。
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[公式 (viii)]，[公式 (viii)’]，[公式 (viii)”]は，それぞれ

cos A =
βγ − α
β′γ′

, cos B =
γα − β
γ′α′

, cos C =
αβ − γ
α′β′

と書ける。これを使って，

sin2 A = 1 − cos2 A

= 1 −
(
βγ − α
β′γ′

)2

=
β′2γ′2 − β2γ2 + 2αβγ − α2

β′2γ′2

=
(β2−1)(γ2−1) − β2γ2 + 2αβγ − α2

β′2γ′2

=
1 + 2αβγ − α2 − β2 − γ2

β′2γ′2

したがって

sin A =

√
1 + 2αβγ − α2 − β2 − γ2

β′γ′
（∵ β′ > 0，γ′ > 0）

同様に

sin B =

√
1 + 2αβγ − α2 − β2 − γ2

γ′α′

sin C =

√
1 + 2αβγ − α2 − β2 − γ2

α′β′

以上の式を使って，

cos B · cos C + cos A
sin B · sin C

=
(γα − β)(αβ − γ) + (βγ − α)α′2

1 + 2αβγ − α2 − β2 − γ2

=
(γα − β)(αβ − γ) + (βγ − α)(α2 − 1)

1 + 2αβγ − α2 − β2 − γ2

=
α(1 + 2αβγ − α2 − β2 − γ2)

1 + 2αβγ − α2 − β2 − γ2

= α

= cosh a

（証明終）
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§ 2.3 三角法の公式からわかること

§ 2.3.1 [距離の公理 (iii)]の確認
#7ページに書いたように，[距離の公理 (iii)]

d(z, z′) ≦ d(z, z′′) + d(z′′, z′)

は三角法の公式から導かれる。これは，双曲幾何における三角法の [公式 (viii),(viii)’,(viii)”]を用いて示される。
三角形 zz′z′′ を考えて，

a = d(z, z′), b = d(z, z′′), c = d(z′′, z′)

とおく。
双曲関数の関係式

cosh x · cosh y =
cosh (x+y) + cosh(x−y)

2
, sinh x · sinh y =

cosh (x+y) − cosh(x−y)
2

より，[公式 (viii)]は

cosh a =
cosh (b+c) + cosh(b−c)

2
− cosh (b+c) − cosh(b−c)

2
· cos A

=
cosh (b+c)

2
(1− cos A) +

cosh(b−c)
2

(1+ cos A)……＊O

と書ける。
ここで，x,yがともに正の数ならば |x−y| ≦ |x+y|であること，および |p| ≦ |q|ならば cosh p ≦ cosh qであ
ることより cosh (b−c) ≦ cosh (b+c)，したがって

＊O ≦
cosh (b+c)

2
(1− cos A) +

cosh(b+c)
2

(1+ cos A)

= cosh (b+c)

よって

a ≦ b + c

これで [距離の公理 (iii)]が確かめられた。
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§ 2.3.2 ユークリッド幾何，球面幾何との比較
§ 2.2.2で求めた一般の三角形 ABCに対する三角法の公式を，ユークリッド幾何における三角法の公式，お
よび球面幾何における三角法の公式と比較してみたい。
まず，[公式 (vii)]および [公式 (viii)]に関して比較する。この 2式をそれぞれ「双曲幾何における正弦公式」，

「双曲幾何における余弦公式」と名付けておく。（なお，[公式 (viii)’],[公式 (viii)”]に関しては，ともに [公式 (viii)]

と同値の命題なので割愛する。）

双曲幾何における正弦公式・余弦公式� �
　上半平面H+ 上にある一般の（ポアンカレの意味の）三角形 ABCにおいて，次の関係式が成り立つ。

[双曲幾何における正弦公式] sin A
sinh a =

sin B
sinh b =

sin C
sinh c （[公式 (vii)])

[双曲幾何における余弦公式] cosh a = cosh b · cosh c − sinh b · sinh c · cos A （[公式 (viii)])� �
ユークリッド幾何における正弦公式・余弦公式� �
　ユークリッド平面 R2 上にある一般の三角形 ABCにおいて，次の関係式が成り立つ。

[ユークリッド幾何における正弦公式] sin A
a =

sin B
b =

sin C
c

[ユークリッド幾何における余弦公式] a2 = b2 + c2 − 2bc · cos A� �
球面幾何における正弦公式・余弦公式� �
　半径 kの球面上にある一般の三角形 ABCにおいて，次の関係式が成り立つ。

[球面幾何における正弦公式] sin A

sin
a
k

=
sin B

sin
b
k

=
sin C

sin
c
k

[球面幾何における余弦公式] cos a
k = cos b

k · cos c
k + sin b

k · sin c
k · cos A� �

ところで，cosh xと sinh xのマクローリン展開は

cosh x = 1 +
x2

2!
+

x4

4!
+

x6

6!
+ · · ·

sinh x = x +
x3

3!
+

x5

5!
+

x7

7!
+ · · ·

であるから， xが十分小さいときはそれぞれ

cosh x ≒ 1 +
x2

2
， sinh x ≒ x

と近似できる。よって，三角形の 3 辺 a,b,c が小さければ，[公式 (vii)] の近似としてユークリッド幾何にお
ける正弦公式 sin A

a =
sin B

b =
sin C

c を，[公式 (viii)] の近似としてユークリッド幾何における余弦公式
a2 = b2 + c2 − 2bc · cos Aを得る。
言い換えれば，三角形が十分小さい場合には双曲幾何においてもユークリッド幾何における三角法で近似で
きる。その違いは三角形が大きくなるにつれ顕著に現れることになる。
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また，cos xと sin xのマクローリン展開は

cos x = 1 − x2

2!
+

x4

4!
− x6

6!
+ · · ·

sin x = x − x3

3!
+

x5

5!
− x7

7!
+ · · ·

であるから，

cos
(

x
i

)
= 1 +

x2

2!
+

x4

4!
+

x6

6!
+ · · · = cosh x

sin
(

x
i

)
=

x
i
+

x3

i · 3!
+

x5

i · 5!
+

x7

i · 7!
+ · · · = −i

(
x +

x3

3!
+

x5

5!
+

x7

7!
+ · · ·

)
= −i sinh x

である。これらから，球面幾何における正弦公式および余弦公式に k = iを代入すると双曲幾何における正弦
公式および余弦公式が得られることがわかる。すなわち，「双曲幾何とは半径 iの球面上の幾何である」と考え
ることができる。
最後に，双曲幾何における三角法の公式 [公式 (ix),(ix)’,(ix)”] であるが，これらの式は，三角形の 3 つの角

A,B,C の大きさが決まれば 3辺の長さ a,b,c も決まるということを示している。言い換えれば，3つの角の大
きさが等しい三角形は合同となる。すなわち，双曲幾何においては，ユークリッド幾何の場合と異なり，「相
似」という概念が存在しないことになる（なお，球面幾何にも「相似」は存在しない）。

[公式 (ix),(ix)’,(ix)”]に関してはもうひとつ，双曲幾何における三角形の内角の和は πより小さくなることも
いえるので，これを示そう。三角形 ABCにおいて，Cを一番大きい角とすると

−π < −C < A+B−C ≦ max{A,B} < π

すなわち

|A+B−C| < π

である。
また，加法定理　 cos (A+B) = cos A cos B − sin A sin B　より

cos A cos B = sin A sin B + cos (A+B)

なので，これと和積公式を用いて [公式 (ix)”]を変形すると

cosh c =
sin A sin B + cos (A+B) + cos C

sin A · sin B

= 1 +
cos (A+B) + cos C

sin A · sin B

= 1 +
2 cos

A+B+C
2

· cos
A+B−C

2
sin A · sin B

ここで，左辺は cosh c > 1であるから（右辺第 2項）> 0であり，sin A > 0，sin B > 0，さらに |A+B−C| < π
より cos A+B−C

2 > 0，したがって cos A+B+C
2 > 0でなければならない。よって A+B+C < πが示された。

ユークリッド幾何においては三角形の内角の和は πに等しくなり，球面幾何においては三角形の内角の和は
πより大きくなることがわかっているので，ここでもまたこれら 3つの幾何の顕著な違いが現れる。
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おわりに
以上，双曲幾何における三角法に関して，ポアンカレの上半平面モデルH+ を用いることによって調べてき
た。しかし，ロバチェフスキーやボヤイはこれらの公式を，「他の公理・公準・定義」と「平行線の公準の否定」
のみから導き出したという。
実際，双曲幾何にはポアンカレの上半平面モデルH+ 以外にもいろいろなモデルがある（ポアンカレの円板
モデル，クラインの円板モデル，半球モデル，擬球モデル，双曲面モデル etc.）が，どのモデルにおいてもこ
れらの公式は成り立つ。これらの公式は，ポアンカレの上半平面モデルH+ が持つ性質なのではなく，双曲幾
何そのものが持つ性質なのである。
残念ながら，私はロバチェフスキーやボヤイがどのようにこれらの公式を導き出したのか知らない。機会が
あれば，また研究してみたい。
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かったのではないかと思う。また，[文献 3]によって双曲幾何と球面幾何との関連を理解することができた。
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